1	
2	
3	
4	Does shelter enhance early seedling survival in dry environments? A
5	test with eight Mediterranean species
6	
7	Francisco M. Padilla ^{1*} , Juan de Dios Miranda ¹ , Rafael Ortega ² , Manuel Hervás ² ,
8	Joaquín Sánchez ² and Francisco I. Pugnaire ¹
9	
10	¹ Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones
11	Científicas. Carretera de Sacramento s/n, La Cañada de San Urbano, E-04120 Almería,
12	Spain
13	
14	² SERFOSUR SL, C/ Gregorio Marañón 37, entreplanta 22, E-04005 Almería, Spain.
15	
16	[*] Corresponding author: <u>fpadilla@eeza.csic.es</u> Phone: +34 950281045, Fax: +34
17	950277100
18	Running title: Tree shelter tubes in arid restorations

19 Abstract

20 Question: In the restoration of degraded arid environments, woody seedling 21 survival is threatened by drought, extreme temperatures and radiance, and herbivory. 22 Shelter may provide planted seedlings with suitable microsites; however, the effects of 23 shelter provision under very dry conditions are not well known. Therefore a better 24 understanding is needed to improve the success of restoration programs. Here we asked 25 whether two types of tree shelters, solid-walled polyethylene tubes and mesh fabric 26 tubes, improved short-term survival of eight Mediterranean tree and shrub species often 27 used in the restoration of arid environments.

Location: We conducted two experimental plantations in degraded field sites in
the province of Almería (SE Spain), under arid Mediterranean conditions.

Methods: One-year-old seedlings of *Ceratonia siliqua*, *Juniperus phoenicea*, *Olea europaea*, *Pinus halepensis*, *P. pinaster*, *Quercus coccifera*, *Q. ilex* and *Tetraclinis articulata* were planted either sheltered by one of the above shelter tubes, or by being
left unsheltered. Survival was recorded the first growing season after planting, which
was a very dry season.

Results: Overall, seedling survival ranged from as little as 0% to 24%, and tree shelters consistently enhanced survival in *Quercus* species only, ranging from 16% in walled shelters to 8% in mesh shelters. Shelters failed to boost survival in the six remaining species.

Conclusion: The results of this study suggest that both walled and mesh shelters
were mostly ineffective at increasing seedling survival for the Mediterranean species
used in this experiment, which strongly coincide with those used in restoration
programs. The use of shelters in restoration programs conducted in arid environments

48	
47	Arid environments – forest restoration – tree shelters – Woody seedlings - Drought
46	
45	types of shelters for arid environments.
44	Quercus species only. Further research is necessary to develop and assess improved
43	should be reconsidered, while walled shelters might be advisable for Mediterranean

49 Introduction

50 Seedling survival is critical in restoration programs conducted in dry 51 Mediterranean environments, as seedlings are very sensitive to several hazards. These 52 include extreme temperatures and irradiance, soil desiccation, strong winds, and 53 herbivory (Moles & Westoby 2004; Padilla et al. 2009). Excessive light and extreme 54 temperatures may damage seedlings, strong, desiccant winds may snap twigs and 55 exacerbate water stress caused by low rainfall, and the seedling's green sprouts may be 56 browsed by cattle and wild fauna (Bainbridge 1994). Seedlings are mostly unable to 57 face these threats by themselves in disturbed environments and large casualties have 58 been reported in projects carried out in arid and semi-arid Mediterranean environments 59 (Alloza & Vallejo 1999; Maestre et al. 2002; Sánchez et al. 2004).

Restoration initiatives in arid environments are often at risk due to a low survival rate amongst transplants. Several procedures have been developed to provide seedlings with better protection in an effort to enhance survival rates (Ludwig & Tongway 1996; Rey-Benayas 1998; Padilla & Pugnaire 2006). The use of a wide array of tree sheltertypes is by far the most common practice given its low cost, ease of use, and efficiency (Bainbridge 1994; Pemán & Navarro 1998; Ponder 2003), yet their effectiveness for non-traditional species in very dry environments has yet to be examined.

Tree shelters, usually made out of plastic or similar materials, and available in several designs, can protect plants against damage from domestic or wild fauna (Dubois et al. 2000; Sharrow 2001; Chaar et al. 2008) and wind (Bainbridge 1994), while at the same time may increase internal air humidity as a result of dew deposition and transpiration condensation inside their walls (del Campo et al. 2006). Furthermore, shelters may decrease excessive irradiance and buffer extreme temperatures (Bellot et

al. 2002; Jiménez et al. 2005; del Campo et al. 2006) thereby reducing

evapotranspiration (Bergez & Dupraz 1997). However, low levels of ventilation caused
by some shelters may increase internal air temperature (Bergez & Dupraz 2009), which
together with a decrease in photosynthetically active radiation reaching the leaves could
constraint CO₂ fixation and plant growth (Dupraz & Bergez 1999). Moreover, in darkcolored tubes overheating is common if used in sunny and hot areas (Ward et al. 2000).
Thus, the overall net balance between shelter benefits and costs determines their
efficiency.

81 Forest restoration in Mediterranean ecosystems is particularly risky because of 82 the low, unpredictable rainfall, long summer drought, high temperatures and irradiance, 83 and frequent grazing (Pausas et al. 2004). Under these limiting conditions, shelters may 84 provide suitable microsites. Mesh-walled and solid-walled shelters (both ventilated and 85 unventilated) are commonly used in Mediterranean restoration programs (Bellot et al. 86 2002; Jiménez et al. 2005; Oliet et al. 2005; del Campo et al. 2006). However, most 87 research with these shelters has been restricted to the most popular species (e.g., 88 Quercus ilex), and their effectiveness in improving survival of other relatively slow-89 growing species characteristic of dry Mediterranean climates, remains to be examined 90 (Oliet & Jacobs 2007). Therefore, research that tests the effects of tree shelters under 91 very dry conditions is necessary to improve the success of restoration projects. 92 We assessed the contribution of two shelter types, mesh-walled and solid-93 walled, to enhance early seedling survival of a wide range of tree and shrub species 94 commonly used in restoration programs carried out in arid mountains of SE Spain.

95 Recurrent restoration failure has been reported in these sites. Here, given the harsh

96 environmental conditions, we expected shelters to enhance seedling survival.

97 Methods

120

98 Experimental sites

99 This study was conducted at two deforested sites approximately 52 km apart in 100 the province of Almería (SE Spain), the Santillana and Cortijo La Sierra sites. The expansion of dry-farming, grazing and logging until the beginning of the 20th century 101 102 eroded almost completely natural vegetation in these areas (Latorre et al. 2001). Natural 103 recovery of these arid landscapes is rather slow (Pugnaire et al. 2006) and restoration 104 efforts have tried to speed up succession (Bonet 2004). However, recurrent restoration 105 failure has been reported in these sites. 106 The climate in both sites is Mediterranean, with a dry season from June to 107 September, and irregular precipitation throughout the rest of the year. Temperatures are 108 moderately low in winter and high in summer. The two sites differed in rainfall and 109 potential vegetation, so tree shelters were tested on different species to account for such 110 a contrast. The Santillana site (37° 6' N lat., 2° 45' W long.) was placed facing north in 111 the Sierra Nevada range at 1,300 m elevation on a 20% slope. Annual precipitation 112 averages 393 mm, and the mean annual temperature is around 13°C (Red de 113 Información Ambiental de Andalucía, 1961-1990). Soils are loamy-sandy, eutric 114 regosols developed over a shallow mica-schist bedrock. The stand community was a 115 shrubland dominated by the large shrubs *Retama sphaerocarpa* and *Genista cinerea* 116 with scattered juveniles of *Quercus ilex*. The Cortijo La Sierra site (37° 1' N lat., 2° 10' 117 W long.) was located on a 35% south-facing slope in the Sierra Alhamilla range, at 700 118 m elevation. The mean annual temperature is 17.3 °C and annual precipitation is 309 119 mm. Soils are loamy-sandy, calcic regosols developed over a mica-schist bedrock

(Lucdeme 1989). The plant community was a scrubland dominated by the small shrubs

121 Anthyllis cytisoides and Artemisia barrelieri, with scattered juveniles of Olea europaea
122 var. sylvestris.

At each experimental site we selected an area of nearly 4 ha. In each area, sites were chosen on opposite slopes with similar plant communities and soils, and differed only in aspect. In Santillana, slopes faced north-east and south-east, while in Cortijo La Sierra slopes faced north and south.

127

128 Species and tree shelters

We used the Phoenicean juniper (*Juniperus phoenicea* L.), Kermes and Holm
oaks (*Quercus coccifera* L. and *Q. ilex* L., respectively), and the maritime pine (*Pinus pinaster* Aiton) on a relatively wet site (Santillana), and the Carob tree (*Ceratonia*

132 siliqua L.), Phoenicean juniper, wild olive (Olea europaea L. var. sylvestris Brot.),

133 Aleppo pine (*Pinus halepensis* Mill.) and the Araar (*Tetraclinis articulata* (Vahl) Mast)

134 on the drier site (Cortijo La Sierra). All these species are native to Mediterranean

135 woodlands and correspond with the potential vegetation in each site (Valle et al. 2003).

136 The use of such species has been subsidized for the restoration of old fields by the

137 regional government (Decree 127/1998, Junta de Andalucía).

138 One of the tree shelters tested consisted of a cylindrical, green, polyethylene

tube, 8 mm-mesh size (Redplanton, Projar SA, Valencia, Spain; mesh shelter hereafter);

140 the other shelter was made of 0.5 mm-thick beige polyethylene (Plastimer SA, Almería,

141 Spain) with 48 lateral 20 mm diameter holes on the lower half of the shelter (solid

shelter, hereafter). Both mesh and solid shelters were anchored by two sticks, were 60

143 cm in height and 15 cm in diameter, and open at the top (Figure 1). Seedling survival in

shelters was compared to survival of seedlings in controls.

146 In January 2003, one-year-old seedlings of standard size grown under identical 147 conditions in a nearby forestry nursery (Padules, Spain; 36° 59' N lat., 2° 46' W long., 148 740 m elevation), were transplanted to the field. Seeds were of local provenance. At the 149 time of transplant, species were distributed on each aspect at random in gaps at a 150 distance of at least 1 m from any perennial species, and were assigned to one of the 151 following treatments: a) mesh-walled shelter, b) solid-walled shelter, or c) no shelter 152 (control). Only one seedling was planted in each tube. In all cases, we dug a small microcatchment (1 m^2 -area) using a hoe to increase water collection following 153 154 traditional techniques. In September 2002, sub-soiling with one ripper to a depth of 0.5 155 m was carried out twice at each site. Since summer drought is one of the major 156 constraints on survival, half of the planted seedlings received two irrigation pulses in 157 May and July, with around 1.5 - 3 L of water supplied at root level through a fine pipe 158 buried 20 cm into the soil close to the roots (Sánchez et al. 2004); the other half 159 remained unwatered throughout. Watered seedlings were chosen at random. 160 The experimental design was factorial with two fully-crossed factors: watering 161 (irrigated vs. control) and shelter type (mesh vs. solid vs. control). Aspect was not taken 162 into account as we lacked plot replication; data from north and south aspects were 163 therefore pooled for each site. Survival was recorded in October 2003, after the first 164 autumn rains. Survival was determined by the presence of living sprouts. The sample 165 size per treatment combination (species x watering x shelter) ranged 60-100 seedlings in 166 Santillana and 60-80 seedlings in Cortijo La Sierra. 167 Rainfall in each experimental site was collected with a pluviometer (Davis 168 Instruments Corp, Hayward, CA, USA) and recorded daily (Hobo, Onset Computers,

Pocasset, MA, USA) from April to October. Rainfall from preceding months was taken
from the nearest meteorological station. Overall rainfall during the course of the
experiment was 28% and 36% below the latest historical records in Santillana and
Cortijo La Sierra, respectively. Despite this lower rainfall, it is worth noting that climate
change scenarios for our region predict a 30% reduction in precipitation (IPCC 2007).
Hence, our findings could provide insights into future restoration trends.

175

176 Micro-environmental conditions in tree shelters

177 Upon experiment ending, we recorded photosynthetically active radiation (PAR, 178 quantum sensor SKP 215, Skye Instruments Ltd, Powys, UK), relative air humidity and 179 temperature (Hobo Pro, Onset Computers, Pocasset, MA, USA) at ground level in 180 shelters placed in pots at the Experimental Station of Arid Zones (CSIC, Almería; 36° 181 50' N lat., 2° 27' W long., 30 m elevation). These measurements aimed to shed light on 182 the mechanisms underlying differing survival between tree shelters, and not to 183 characterize growing conditions inside. Data, collected over a five-day period in 184 September 2003 during a sunny spell, allowed for a relative comparison on 185 microclimatic amelioration between tree shelters and controls. 186 Micro-environmental data were recorded every minute and averaged every ten 187 minutes in a CR10X data logger (Campbell Scientific Ltd, Leicestershire, UK). We 188 used three replicates for each shelter type and two for controls. Vapor pressure deficit 189 (VPD, kPa) was calculated from air temperature (T, $^{\circ}$ C) and relative air humidity (RH, %) following Rosenberg et al. (1983): 190

191
$$VPD = \left(1 - \frac{RH}{100}\right) \times 0.61078 \times e^{\left(\frac{17.269 \times T}{T + 237.3}\right)}$$
[1]

Statistics

193	Differences in seedling survival between shelters and control were tested by				
194	using simple binary logistic regression where survival was the dependent variable, and				
195	watering and shelter-type were the predictor factors. In each site, we ran independent				
196	logistic regressions for each species. Logistic regression started from the saturated				
197	model (Watering x Shelter), and significance of the interaction and main factors were				
198	determined through backwards elimination, firstly of interaction, and then of main				
199	factors, and by comparing the goodness-of-fit (G^2) between the model with an				
200	eliminated term and the preceding model, using the χ^2 distribution as a significance				
201	contrast (Tabachnick & Fidel 2001).				
202	Differences in daily mean, maximum and minimum temperatures, VPD, and				
203	PAR between shelter types were tested through one-way ANOVA, followed by Tukey				
204	tests. For these tests, we randomly selected <u>one day</u> from our five-day dataset, since				
205	measurements were taken on a relatively uniform, sunny spell. For PAR analysis we				
206	considered only the daylight time period, between 8:00-17:30 solar time.				
207	Analyses were conducted with the SPSS v15.0 statistical package (SPSS Inc.,				
208	Chicago, IL, USA), and significant differences were set at $p < 0.05$.				
209					
210	Results				
211	Seedling survival				
212	Santillana site				
213	There were no significant differences in seedling survival among shelter				
214	treatments in Juniperus phoenicea (p>0.3, Table 1, Fig. 2A). Summer irrigation				
215	enhanced survival from 12 to 24% (control vs. watered seedlings, respectively;				

216	p<0.001). Amongst <i>Pinus pinaster</i> seedlings, survival was very low, with figures
217	ranging from 0-7%. Survival of watered seedlings was close to 4% in all treatments, but
218	non-irrigated seedlings only survived in mesh-walled shelters (Watering x Shelter,
219	p<0.02). Overall, survival of <i>Quercus coccifera</i> seedlings was significantly higher in
220	shelters (p<0.001), particularly in solid-walled shelters (17%) followed by mesh-walled
221	shelters (11%), while only 3% of the control seedlings survived. Watering increased
222	survival almost four times across treatments (4 vs. 15 %; p<0.001). Quercus ilex also
223	survived better in both types of shelters than in control (p<0.003) with higher survival in
224	watered treatments (p<0.001). The highest survival rate was found in solid-walled
225	shelters (15%) followed by mesh-walled shelters (7%) with only 4% in control
226	seedlings. Survival of watered seedlings was four-fold that of unirrigated ones.
227	
228	Cortijo La Sierra site
229	Most of the seedlings planted at this site died in summer, with survival ranging
230	from 0-6% (Fig. 2B). There was a weak effect of tree shelters on survival of Ceratonia
231	siliqua (p<0.05) and Tetraclinis articulata (p<0.04; Table 1), with seedlings in solid-
232	walled shelters surviving slightly better (4%) than those protected with mesh-walled
233	shelters or living in control (<1%). Tree shelters had no effect at all on survival of
234	Juniperus phoenicea, Olea europaea and Pinus halepensis. Similarly, irrigation did not

- enhance survival in any species other than *Tetraclinis articulata* (p<0.03).
- 236

237 Micro-environmental conditions in tree shelters

PAR was significantly lower in solid-walled than in mesh-walled shelters andcontrols; daily mean and max PAR recorded in solid-walled shelters was 75% below

240 that recorded in control and near 30% in mesh-walled shelters (Table 2). Thus, solid-241 walled shelters diminished PAR reaching the soil surface to a greater extent than mesh 242 shelters. VPD tended to be lower in tree shelters than in control, as shelters retained air 243 moisture. Not only were there differences among shelters in mean VPD, but also in min. 244 and max. values (Table 2). By contrast, mean, max. and min. air temperature inside tree 245 shelters and in control did not differ. Overall, the lowest PAR and VPD levels were 246 found in solid shelters, while the highest were recorded in the control; mesh shelters 247 were in between the two.

248

249 Discussion

250 We tested whether solid-walled and mesh-walled shelters, both commonly used 251 in arid restoration programs of SE Spain, enhanced survival of Mediterranean woody 252 species. Overall, survival was significantly higher in solid-walled shelters than in mesh-253 walled shelters, or in controls in four out of the eight species tested. However, this 254 effect was almost negligible in two of these species, as survival was so low (<3%) in 255 shelters that the effect is irrelevant in management terms. This leads us to conclude that 256 under very dry conditions such as those at our field sites, shelter alone does not ensure 257 establishment, as found elsewhere when using the shelter provided by piled shrub 258 branches in a nearby area (Padilla & Pugnaire, 2009).

259 Solid-walled shelters reduced the amount of radiation reaching the soil surface to 260 a greater extent than did mesh-walled shelters, whereas both shelter types resulted in 261 higher air moisture than in control. Although we did not record levels of herbivory 262 explicitly, we did observe some browsed shoots particularly in control seedlings, while 263 shelters prevented rabbits and mice from browsing on the protected seedlings. *Quercus*

264 coccifera and Q. ilex found beneficial protection from browsers and intense summer 265 radiation in solid-walled shelters when compared to mesh-walled shelters and controls. 266 These findings are in agreement with reports that highlight the preference of these 267 species to dark-colored, solid-walled shelters in the Mediterranean. Bellot et al. (2002) 268 found that brown plastic protectors were most beneficial for Kermes oak probably due 269 to radiation interception to optimum levels for the species. Rey-Benayas (1998) 270 reported larger survival under artificial shade than in controls, and Oliet & Jacobs 271 (2007) recommended shelter tubes for planting Holm oaks in Mediterranean areas. 272 Furthermore, the regeneration niche of these Quercus species is linked to the shaded 273 understorey (Broncano et al. 1998; Puerta-Piñero et al. 2007; Smit et al. 2008), thus 274 higher levels of shelter, such as those provided by our solid-walled shelters, are 275 appropriate over mesh-walled shelters or unsheltered planting for these *Quercus* 276 species, as these shelters intercept radiation and protect against herbivory. 277 Ceratonia and Tetraclinis also found shelters effective in statistical terms. The 278 fact that seedlings of *Ceratonia* performed similarly in mesh-walled shelters and in 279 controls suggests that shade provided by soil-walled shelters, rather than browsing 280 protection, mediated the shelter effect. *Ceratonia* is generally intolerant of deep shade, 281 and establishes itself in well-lit gaps in open woodlands in Spain (Sack et al. 2003). 282 This does not preclude, however, that in our very dry site, saplings could profit from 283 some shade; evidence reveals that in xeric and open habitats this species tends to occur 284 in late-successional stages characterized by lower irradiance (Herrera 1984; Valle et al. 285 2003). Similarly, tree shelters had significant effects on Tetraclinis articulata and 286 seedlings likely benefited from protection against herbivory rather than from irradiance, 287 because performance in shade-providing, solid-walled tubes equaled survival in mesh-

walled tubes. Shade does not seem to be a critical factor for the regeneration of this
species, which mostly occurs in very harsh environments of northern Africa on a wide
range of substrates. Rather, high grazing pressure limits the natural regeneration of the
species (Abbas et al. 2006).

292 Neither solid-walled nor mesh-walled shelters consistently affected survival of 293 the remaining species, Juniperus phoenicea and Pinus pinaster in Santillana, and Olea 294 europaea and P. halepensis in Cortijo La Sierra. Despite the fact that differences were 295 not significant, seedlings of *Pinus pinaster* tended to perform better in mesh tubes than 296 in solid-walled tubes, most likely because the mesh protected buds against rodents and 297 rabbits, while at the same time allowing light to pass through. This pattern is consistent 298 with the behavior of such a helophytic species (Calvo et al. 2008). Some seedlings of 299 *Olea europaea* remained alive in solid-walled shelters, whereas in controls or in mesh 300 tubes, survival tended to be lower (but not significantly). These findings would concur 301 with previous work reporting that some sort of shelter could increase seedling 302 recruitment of this species (Rey & Alcántara 2000). Survival of Pinus halepensis 303 saplings was one of the lowest in the whole experiment regardless of shelter type, which 304 is likely to be due to water stress in Cortijo La Sierra site being too intense even for this 305 helophytic pine.

Research has shown that irrigation in spring and summer may provide seedlings with enough moisture to face summer drought (Rey-Benayas 1998; Bainbridge 2002; Sánchez et al. 2004; Banerjee et al. 2006; Alrababah et al. 2008), yet the amount of water supplied is critical (Allen 1995). The two pulses of water we supplied (in May and July) enhanced survival slightly at the more humid Santillana site, but did not increase survival at the drier Cortijo La Sierra site. Therefore, more frequent or intense

watering schemes seem to be necessary in these extremely dry sites, in order to boostearly seedling survival.

314 Overall, our findings suggest that both shelter types assessed do not enhance 315 seedling survival rates consistently for most of the species planted at these dry sites. We 316 therefore suggest that the use of such shelters be reconsidered for environments similar 317 to ours, since they are not worth the labor or costs at these sites. The shelter types tested 318 here may have further drawbacks because they have a great visual impact, they remain 319 in the field long term, and removals are typically expensive. These reasons, together 320 with their low efficiency, make it necessary to develop new designs and to improve 321 materials for shelters in arid environments. An alternative to tree shelters can be 322 provided by using pre-existing vegetation or piled branches as nurse plants for seedlings 323 of the shrub and tree species being restored (Ludwig & Tongway 1996; Padilla & 324 Pugnaire 2006). Fertile and moister soils may occur underneath living nurse plants, 325 unlike tree shelters or piled branches, so the conjunction of sheltering and fertile, wetter 326 soils in the understorey of nurse plants may result in enhanced seedling survival when 327 compared to only sheltered seedlings (Gómez-Aparicio et al. 2005; Padilla & Pugnaire 328 2009; Prieto et al., unpublished). However, research comparing the effectiveness of 329 nurse plants *versus* tree shelters or piled branches remains poorly understood, but is 330 needed for more appropriate restoration procedures.

In conclusion, solid-walled shelters were most effective at enhancing seedling survival for *Quercus coccifera* and *Q. ilex* in our very dry environments; however, the tree shelters tested were largely ineffective for the other six Mediterranean species. Despite these species being well-adapted to Mediterranean droughts, under the severe conditions of our Mediterranean summer, only the drought-tolerant *Quercus* species

336	found tree shelters beneficial both in statistical and management terms. Thus, the use of
337	these tree shelter-types in arid environments should be reconsidered, especially under
338	global change scenarios imposing drier conditions, as they have proven to contribute
339	little to the enhancement of seedling survival, but often account for a significant
340	proportion of the restoration budget. The real determining aspect of these sites is water,
341	so further research is still necessary to validate mechanisms, either through artificial
342	shelters, natural shelters or nurse plants, that alleviate water stress among seedlings in
343	arid environments.
344	
345	Acknowledgements
346	We appreciate Michèle Faisey, Guillermo Defossé and anonymous reviewers for
347	improving earlier drafts of this manuscript, Olga Corona for field work, and grants
348	AGL2000-0159-P4-02 and REN2001-1544/GLO of the Spanish Ministry of Science for
349	financial support.
350	
351	References
352	Abbas, Y., Ducousso, M., Abourouh, M., Azcón, R. & Duponnois, R. 2006.
353	Diversity of arbuscular mycorrhizal fungi in Tetraclinis articulata (Vahl)
354	Masters woodlands in Morocco. Annals Forest Science 63: 285-291.
355	Alrababah, M.A., Bani-Hani, M.G., Alhamad, M.N. & Bataineh, M.M. 2008.
356	Boosting seedling survival and growth under semi-arid Mediterranean
357	conditions: Selecting appropriate species under rainfed and wastewater
358	irrigation. Journal of Arid Environments 72: 1606-1612.

359	Allen, E.B. 1995. Restoration ecology: limits and possibilities in arid and semiarid					
360	lands. In: Roundy, B.A., McArthur, E.D., Haley, J.S. & Mann, D.K. (eds.)					
361	Wildland shrub and arid land restoration symposium, pp. 7-15. U.S.					
362	Department Of Agriculture, Forest Service, Intermountain Research Station,					
363	City.					
364	Alloza, J.A. & Vallejo, R. 1999. Relación entre las características meteorológicas					
365	del año de plantación y los resultados de las repoblaciones. Ecología 13:					
366	173-187.					
367	Bainbridge, D. 1994. Tree Shelters improve establishment on dry sites. Tree					
368	Planters' Notes 45: 13-16.					
369	Bainbridge, D. 2002. Alternative irrigation systems for arid land restoration.					
370	Ecological Restoration 20: 23-30.					
371	Banerjee, M.J., Gerhart, V.J. & Glenn, E.P. 2006. Native plant regeneration on					
372	abandoned desert farmland: Effects of irrigation, soil preparation, and					
373	amendments on seedling establishment. Restoration Ecology 14: 339-348.					
374	Bellot, J., De Urbina, J.M.O., Bonet, A. & Sánchez, J.R. 2002. The effects of					
375	treeshelters on the growth of Quercus coccifera L. seedlings in a semiarid					
376	environment. Forestry 75: 89-106.					
377	Bergez, J.E. & Dupraz, C. 1997. Transpiration rate of Prunus avium L seedlings					
378	inside an unventilated tree shelter. Forest Ecology and Management 97: 255-					
379	264.					
380	Bergez, J.E. & Dupraz, C. 2009. Radiation and thermal microclimate in tree shelter.					
381	Agricultural and Forest Meteorology 149: 179-186.					

Bonet, A. 2004. Secondary succession of semi-arid Mediterranean old-felds in
south-eastern Spain: insights for conservation and restoration of degraded
lands. Journal of Arid Environments 56: 213-233.
Broncano, M.J., Riba, M. & Retana, J. 1998. Seed germination and seedling
performance of two Mediterranean tree species, holm oak (Quercus ilex L.)
and Aleppo pine (Pinus halepensis Mill.): a multifactor experimental
approach. Plant Ecology 138: 17-26.
Calvo, L., Santalla, S., Valbuena, L., Marcos, E., Tarrega, R. & Luis-Calabuig, E.,
2008. Post-fire natural regeneration of a Pinus pinaster forest in NW Spain.
Plant Ecology 197: 81-90.
Chaar, H., Mechergui, T., Khouaja, A. & Abid, H. 2008. Effects of treeshelters and
polyethylene mulch sheets on survival and growth of cork oak (Quercus
suber L.) seedlings planted in northwestern Tunisia. Forest Ecology and
Management 256: 722-731.
del Campo, A.D., Navarro, R.M., Aguilella, A. & González, E. 2006. Effect of tree
shelter design on water condensation and run-off and its potential benefit for
reforestation establishment in semiarid climates. Forest Ecology and
Management 235: 107-115.
Dubois, M.R., Chappelka, A.H., Robbins, E., Somers, G. & Baker, K. 2000. Tree
shelters and weed control: Effects on protection, survival and growth of
cherrybark oak seedlings planted on a cutover site. New Forests 20: 105-118.
Dupraz, C. & Bergez, J.E. 1999. Carbon dioxide limitation of the photosynthesis of
Prunus avium L. seedlings inside an unventilated treeshelter. Forest Ecology
and Management 119: 89-97.

406	Gómez-Aparicio, L., Gómez, J.M., Zamora, R. & Boettinger, J.L. 2005. Canopy vs.
407	soil effects of shrubs facilitating tree seedlings in Mediterranean montane
408	ecosystems. Journal of Vegetation Science 16: 191-198.
409	Herrera, C.M. 1984. Tipos morfológicos y funcionales de plantas del matorral
410	mediterráneo del sur de España. Studia Oecologica 5: 7-34.
411	IPCC. 2007. Intergovernmental Panel on Climate Change, Climate Change 2007:
412	Synthesis Report, Contribution of Working Groups I, II and III to the
413	Fourth Assessment Report of the Intergovernmental Panel on Climate
414	Change Geneva (Switzerland).
415	Jiménez, M.N., Navarro, F.B., Ripoll, M.A., Bocio, I. & De Simón, E. 2005. Effect
416	of shelter tubes on establishment and growth of Juniperus thurifera L.
417	(Cupressaceae) seedlings in Mediterranean semi-arid environment. Annals
418	Forest Science 62: 717-725.
419	Latorre, J.G., Garcia-Latorre, J. & Sanchez-Picon, A. 2001. Dealing with aridity:
420	socio-economic structures and environmental changes in an arid
421	Mediterranean region. Land Use Policy 18: 53-64.
422	Lucdeme. 1989. Sorbas 1031. Mapa de Suelos. MAPA, España.
423	Ludwig, J.A. & Tongway, D.J. 1996. Rehabilitation of semiarid landscapes in
424	Australia. II. Restoring vegetation patches. Restoration Ecology 4: 398-406.
425	Maestre, F.T., Bautista, S., Cortina, J., Díaz, G., Honrubia, M. & Vallejo, R. 2002.
426	Microsite and mycorrhizal inoculum effects on the establishment of Quercus
427	coccifera in a semi-arid degraded steppe. Ecological Engineering 19: 289-
428	295.

429	Martínez-Ferri, E., Balaguer, L., Valladares, F., Chico, J.M. & Manrique, E., 2000.
430	Energy dissipation in drought-avoiding and drought-tolerance tree species at
431	midday during the Meditarranean summer. Tree Physiology 20: 131-138.
432	Moles, A.T. & Westoby, M. 2004. What do seedlings die from and what are the
433	implications for evolution of seed size? Oikos 106: 193-199.
434	Oliet, J., Planelles, R., Artero, F. & Jacobs, D.F. 2005. Nursery fertilization and tree
435	shelters affect long-term field response of Acacia salicina Lindl. planted in
436	Mediterranean semiarid conditions. Forest Ecology and Management 215:
437	339-351.
438	Oliet, J.A. & Jacobs, D.F. 2007. Microclimatic conditions and plant morpho-
439	physiological development within a tree shelter environment during
440	establishment of Quercus ilex seedlings. Agricultural and Forest
441	Meteorology 144: 58-72.
442	Padilla, F.M., Ortega, R., Sánchez, J. & Pugnaire, F.I. 2009. Re-thinking species
443	selection for the restoration of arid environments. Basic and Applied Ecology
444	10: 640-647.
445	Padilla, F.M. & Pugnaire, F.I. 2006. The role of nurse plants in the restoration of
446	degraded environments. Frontiers in Ecology and the Environment 4: 196-
447	202.
448	Padilla, F.M. & Pugnaire, F.I. 2009. Species identity and water availability
449	determine establishment success under the canopy of Retama sphaerocarpa
450	shrubs in a dry environment. Restoration Ecology 17: 900-907.
451	Pausas, J.G., Bladé, C., Valdecantos, A., Seva, J.P., Fuentes, D., Alloza, J.A.,
452	Vilagrosa, A., Bautista, S., Cortina, J. & Vallejo, R. 2004. Pines and oaks in

453	the restoration of Mediterranean landscapes of Spain: New perspectives for
454	an old practice - a review. Plant Ecology 171: 209-220.
455	Pemán, J. & Navarro, R.M. 1998. Repoblaciones forestales. Edicions de la
456	Universitat de Lleida, Lleida.
457	Ponder, F. 2003. Ten-year results of tree shelters on survival and growth of planted
458	hardwoods. Northern Journal of Applied Forestry 20: 104-108.
459	Puerta-Piñero, C., Gómez, J.M. & Valladares, F. 2007. Irradiance and oak seedling
460	survival and growth in a heterogeneous environment. Forest Ecology and
461	Management 242: 462-469.
462	Pugnaire, F.I., Luque, M.T., Armas, C. & Gutiérrez, L. 2006. Colonization processes
463	in semi-arid Mediterranean old-fields. Journal of Arid Environments 65: 591-
464	603.
465	Rey, P.J. & Alcántara, J.M., 2000. Recruitment dynamics of a fleshy-fruited plant
466	(Olea europaea): connecting patterns of seed dispersal to seedling
467	establishment. Journal of Ecology 88: 622-633
468	Rey-Benayas, J.M. 1998. Growth and survival in Quercus ilex L. seedlings after
469	irrigation and artificial shading on Mediterranean set-aside agricultural land.
470	Annales des Sciences Forestieres 55: 801-807.
471	Rosenberg, N.J., Blad, B.I. & Verma, S.B. 1983. Microclimate. The biological
472	environment. John Wiley & Sons.
473	Sack, L., Grubb, P.J. & Marañón, T. 2003. The functional morphology of juvenile
474	plants tolerant of strong summer drought in shaded forest understories in
475	southern Spain Plant Ecology 168: 139-163.

476	Sánchez, J., Ortega, R., Hervás, M., Padilla, F.M. & Pugnaire, F.I. 2004. El
477	microrriego, una técnica de restauración de la cubierta vegetal para
478	ambientes semiáridos. Cuadernos de la Sociedad Española de Ciencias
479	Forestales 17: 109-112.
480	Sharrow, S.H. 2001. Effects of shelter tubes on hardwood tree establishment in
481	western Oregon silvopastures. Agroforestry Systems 53: 283-290.
482	Smit, C., Den Ouden, J. & Diaz, M. 2008. Facilitation of Quercus ilex recruitment
483	by shrubs in Mediterranean open woodlands. Journal of Vegetation Science
484	19: 193-200.
485	Tabachnick, B.G. & Fidel, L.S. 2001. Using multivariate statistics. Allyn & Bacon,
486	MA.
487	Valle, F., Algarra Ávila, J.A., Arrojo Agudo, E., Asensi Marfil, A., Cabello, J., Cano
488	Carmona, E., Cañadas Sánchez, E.M., Cueto, M., Dana, E.D., De Simón, E.,
489	Díez Garretas, B., García Fuentes, A., Giménez Luque, E., Gómez Mercado,
490	F., Jiménez Morales, M.N., Linares Cuesta, J.E., Lorite, J., Melendo Luque,
491	M., Montoya Fernández, M.C., Mota Poveda, J.F., Navarro, F.B., Peñas, J.,
492	Salazar Mendías, C. & Torres Cordero, J.A. 2003. Mapa de Series de
493	Vegetación de Andalucía. Editorial Rueda, S.L., Alcorcón (Madrid).
494	Ward, J.S., Gent, M.P.N. & Stephens, G.R. 2000. Effects of planting stock quality
495	and browse protection-type on height growth of northern red oak and eastern
496	white pine. Forest Ecology and Management 127: 205-216.
497	Zunzunegui, M., Díaz Barradas, M.C., Ain-Lhout, F., Clavijo, A. & García Novo,
498	F., 2005. To live or to survive in Doñana dunes: Adaptive responses of
499	woody species under a Mediterranean climate. Plant and Soil 273: 77-89
500	

- 501 **Tables**
- 502

Table 2. Photosynthetically active radiation (PAR), vapor pressure deficit (VPD) and air temperature in mesh- and solid-walled shelters, and in controls, measured at soil level in experimental pots in September 2003 upon experiment ending; F- and *p*-values values of one-way ANOVA. Significant differences among shelter treatments are indicated at *p*<0.05 by bold, differing lower-case letters after Tukey test. Values are means \pm 1 SE.

		Maala Calid Contor	Control	ANOVA		
		Wiesh	Solid	Control	$F_{2,4}$	р
PAR (μ mol m ⁻² s ⁻¹)	Mean	580±15 ^a	113±10 ^b	823±9 ^c	1419.69	< 0.001
	Max	1264 ± 40^{a}	200 ± 17^{b}	1750±13 ^c	1523.60	< 0.001
	Min	114 ± 5^{a}	21±1 ^b	111±3 ^a	474.11	< 0.001
Air temperature (°C)	Mean	$24.74{\pm}0.07^{a}$	25.24 ± 0.02^{a}	25.09 ± 0.05^{a}	0.80	0.498
	Max	$33.44{\pm}0.26^{a}$	34.10±0.67 ^a	$35.29{\pm}0.52^a$	0.78	0.508
	Min	$21.34{\pm}0.10^{a}$	21.65±0.13 ^a	21.11 ± 0.09^{a}	0.81	0.497
Air humidity (%)	Mean	76.1 ± 2.4^{ab}	86.3±7.3 ^b	52.7 ± 0.0^{a}	9.61	0.019
	Max	96.3±1.1ª	99.9±0.7 ^a	90.1 ± 0.0^{b}	26.97	0.002
	Min	$37.4{\pm}4.8^{a}$	58.9±21.1 ^a	19.5±0.0 ^a	1.71	0.272
VPD (kPa)	Mean	0.89±0.09 ^a	0.86 ± 0.02^{a}	1.82 ± 0.02^{b}	34.86	0.003
	Max	$3.18{\pm}0.24^{a}$	3.33±0.22 ^a	$5.76{\pm}0.20^{\rm b}$	24.71	0.006
	Min	$0.10{\pm}0.03^{a}$	$0.02{\pm}0.02^{a}$	0.25 ± 0.00^{b}	17.82	0.010

Table 1. Results of logistic regression performed with seedling survival as the response variable and watering supply (watered and non-watered)
and tree shelters (soil, mesh and control) as predictor variables for each species. No data for *J. phoenicea* at Cortijo La Sierra site because all

512 seedlings died. Bold letters show significant differences at p < 0.05.

Site	Species	Watering		Shelter		Watering x Shelter	
		χ^2	Р	χ^2	Р	χ^2	Р
Santillana	Juniperus phoenicea	13.465	<0.001	2.307	0.316	2.234	0.327
	Pinus pinaster	1.505	0.220	2.959	0.228	9.226	0.010
	Quercus coccifera	12.855	<0.001	19.852	<0.001	4.788	0.091
	Quercus ilex	17.430	<0.001	12.222	0.002	4.008	0.135
Cortijo La Sierra	Ceratonia siliqua	0.306	0.580	6.215	0.045	1.249	0.536
	Juniperus phoenicea	-	-	-	-	-	-
	Olea europaea	2.452	0.117	5.721	0.057	3.409	0.182
	Pinus halepensis	0.721	0.396	1.021	0.600	4.957	0.084
	Tetraclinis articulata	5.063	0.024	6.866	0.032	1.560	0.458

Figure captions

515 Figure 1. Partial view of the solid-walled (left) and mesh-walled (right) shelters516 used in this research.

Figure 2. Survival rate in autumn (after nine months), of eight Mediterranean species grown in two different types of shelters (mesh-walled and solid-walled) and unsheltered (control) in Santillana (a) and Cortijo La Sierra (b) experimental sites. Note that *Juniperus phoenicea* does not appear in the Cortijo La Sierra site because all seedlings died.

524 Figure 1

